Submarine groundwater discharge (SGD) is a ubiquitous process that delivers significant amounts of nutrients and other solutes to coastal ecosystems worldwide. Although the quality and quantity of SGD has been characterized at many sites, the biological implications of this process remain  poorly understood. The objective of this work was to compare the physiological response of  macroalgae and benthic community structure across gradients of SGD and nutrient loading in Hawai‘i. Common marine algae were collected and/or deployed at several sites on O‘ahu, and Maui. Selection  of sites was informed by adjacent land use, known locations of wastewater injection wells, and previous estimates of environmental risk due to onsite sewage disposal systems (OSDS). For deployed  samples, initial values of algal tissue nitrogen (N) parameters were determined after pretreatment  in low nutrient conditions. At all locations, algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with the N parameters (δ15N and N concentration) of coastal groundwater , marine surface water, or groundwater simulations. Algal tissue N was highest (> 2 %) in samples located nearshore at sites adjacent to coastal aquifers enriched with anthropogenic sources of N. The lowest tissue N values (< 1 %) were found offshore or at relatively unimpacted sites. In general, the δ15N values of algal tissues and water samples were highest (9 – 18 ‰) at sites adjacent to high-volume wastewater injection wells and high densities of OSDS; lowest values (< 4 ‰) were observed in samples adjacent to sugarcane fields. Benthic diversity was greatest in locations with low anthropogenic impact. In contrast, highly impacted locations were dominated by opportunistic species. This work advances the use and interpretation of algal bioassays by highlighting the importance of onshore-offshore trends, and deviations from initial N parameter values, for the detection of N source and relative N availability. Wastewater was detectable and a major source of N at many locations. These results support recent studies that indicate SGD is a significant transport pathway for anthropogenic pollutants with important biogeochemical implications. Minimizing contaminant loads to coastal aquifers will reduce pollutant delivery to nearshore reefs in areas with SGD flux.

Click here copy of Daniel Amato’s 2015 Dissertation

Daniel-Amato-Dissertation_2015_University-of-Hawaii-at-Manoa-small